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ABSTRACT: Hailstones in wet growth are commonly found in thunderclouds. While the ice-ice relative 

growth rate mechanism is generally accepted as the most likely cause of thunderstorm electrification, it is 

uncertain if this mechanism will operate under wet growth conditions because ice crystals are more likely 

to stick to the wet surface of a hailstone rather than bounce off it. Experiments were carried out in the 

laboratory to investigate if there was any charge separated when vapor-grown ice crystals bounced off a 

wet hailstone. A cloud of supercooled droplets, with and without ice crystals, was drawn past a simulated 

hailstone. In the dry growth regime, the hailstone charged strongly positive when droplets and crystals 

co-existed in the cloud. With only droplets in the cloud, there was no charging in the dry growth regime. 

However, as the hailstone attained wet growth, positive charging currents of about 0.5 and 3.5 pA were 

observed at 12 and 20 m s-1, respectively. We hypothesize that this observed charging was due to the 

evaporation of melt water. This so called Dinger-Gunn Effect is due to the ejection of negatively charged 

minute droplets produced by air bubbles bursting at the surface of the melt water. However the charge 

separated in wet growth was an order of magnitude smaller than that in dry growth and, therefore, we 

conclude that it is unlikely to play an important role in the electrification of thunderstorms. 

 

INTRODUCTION 
 

Hailstones grow by the accretion of supercooled water droplets, a process that is also known as riming. 

The freezing water transfers latent heat to the hailstone so that if the accretion rate and/or air temperature 

are/is high enough, its surface temperature may rise to 0ºC when it is said to be in wet growth. Hailstones 

in wet growth are commonly found in thunderclouds, especially in the lower regions where the air 

temperature exceeds -10ºC [Pruppacher and Klett, 2010]. In the dry growth regime, the riming particles 

are known as soft hail or graupel.  

It is now generally accepted that the dominant mechanism of thunderstorm electrification is the 

so-called relative growth rate mechanism, where, when two ice particles impact and separate, the particle 

with the higher surface diffusional growth rate acquires the positive charge [Baker et al., 1987; Saunders, 

2008]. Laboratory experiments have shown that substantial amounts of charge are separated when graupel 

pellets interact with vapor-grown ice crystals [Reynolds et al, 1957; Takahashi, 1978; Jayaratne et al, 

1983; Keith and Saunders, 1990]. The relative growth rate, and therefore the sign of charge acquired, 

depend on the temperature and cloud water content [Baker et al, 1987]. Generally, throughout most of a 
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cloud, graupel acquires a negative charge and the ice crystals an equivalent positive charge. Falling 

graupel pellets carry the negative charge downwards, while the ice crystals are swept up in the strong 

updrafts to the top of the cloud, giving rise to a thundercloud dipolar charge structure with the positive 

above the negative [Simpson and Scrase, 1937]. Takahashi [1978] and Jayaratne et al. [1983] showed that 

at temperatures higher than a critical value called the ‘reversal temperature’ the graupel will acquire a 

positive charge, with the ice crystals becoming negative. The reversal temperature was dependent on the 

cloud water content, being colder at higher water contents. They used these observations to explain the 

existence of the lower positive charge center giving rise to the commonly-observed tripole charge 

structure in thunderstorms [Krehbiel, 1986; Williams, 1989]. Although much effort has been devoted to 

the study of the relative growth mechanism of thunderstorm electrification, its precise physical mechanism 

has eluded scientists to-date. One of the controversial observations over the years has been the observation 

of strong positive charging at relatively high cloud water contents observed by Takahashi [1978]. 

Calculations have shown that, at the temperatures, cloud water contents and speeds of interaction 

corresponding to this charging regime the surface of the hailstone was in wet growth [Jayaratne, 1993].  

Saunders et al [1991] suggested that under such conditions impacting ice crystals would stick to the hail 

pellet rather than bounce off thereby preventing any charge transfer. This was later confirmed by Saunders 

and Brooks [1992] who found negligible charging under wet growth conditions. However, Williams et al 

[1991] suggested that crystals can bounce off a hailstone in wet growth, charging it positively. Saunders 

and Brooks [1992] showed that, in a cloud water content vs temperature diagram, the transition from 

negative to positive charging of rime did not coincide with the boundary between dry growth and wet 

growth. The present study was carried out to experimentally resolve the question of whether charge is 

separated during ice crystal – hail interactions under controlled conditions of wet growth. 

 

METHODS 

 

The experiments were carried out in a large chest freezer in the laboratory. A cloud of supercooled 

droplets was produced by injecting steam from a boiler placed outside the freezer. The cloud was seeded 

by popping a small plastic packing bubble in a syringe. The rapid expansion and cooling gave rise to ice 

crystals that grew vigorously at the expense of the droplets to a size of about 50 µm, after which they fell 

out of the cloud. Crystal size and concentration were determined by collecting them on formvar-coated 

glass slides and analysing the replica under a microscope as described in Griggs and Jayaratne [1986]. 

Fig 1 shows a schematic diagram of the experimental arrangement. The hailstone was simulated by a 

stainless steel rod (R) of length 32 mm and diameter 4 mm, fixed horizontally in a vertical tube of internal 

diameter 36 mm. The cloud was drawn past the rod at a controlled speed by means of an air pump located 

outside the freezer. The supercooled droplets impacting on the rod formed a layer of soft rime on its 

surface. Once the cloud was seeded, the ice crystals interacted with the riming rod simulating particle 

interactions in a thundercloud. The rod was electrically connected through a current-to-voltage converting 

amplifier (A) to a sensitive electrometer (E) that continuously measured the current due to any charge 

acquired. The charge acquired flowed through the electrometer to ground with a time constant of 1 s. A 

small plastic cup (C) prevented a rime bridge forming between the rod and earth that would cause the  
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Fig 1: Schematic diagram of the experimental arrangement. 

 

current to leak to earth by-passing the electrometer. An input current of 100 pA gave an output voltage of 

1V. The minimum detectable voltage was 1 mV which corresponded to a charging current of 0.1 pA. 

The temperature of the cloud (Tc) was measured by a bead thermocouple mounted within the freezer. 

The temperature of the rime or graupel (Tg) was measured by a thermocouple mounted on the underside 

of the rod. Another thermocouple (Ta) was mounted just below the rod. Supercooled droplets impacting 

and freezing on this thermocouple raised its temperature above Tc. The temperature elevation was related 

to the cloud water content, Tc and the air flow rate in the tube. The cloud water content was measured by 

capturing cloud droplets on a thin wire moved through the cloud. A series of calibration experiments were 

carried out at a range of conditions and this enabled an estimate of the cloud water content to be derived 

during the experiments in relation to the observed value of Ta. 

 

RESULTS AND DISCUSSION 

 

In each experiment, the freezer was cooled to a pre-determined temperature and steam injected to 

produce a stable cloud of supercooled droplets at a required cloud water content. Where required, the 

cloud was seeded at this stage. The cloud was then drawn through the tube at a fixed flow speed. 

Such a stable cloud was obtained at Tc = -10ºC at a water content of about 3.0 g m-3 and drawn 

through the tube at a steady speed of 12 m s-1. The graupel temperature, Tg, increased steadily and the 

rime on the rod attained wet growth within about 2 min. No charging was observed until Tg reached -2ºC 

when a small positive charging current of about 0.5 pA was observed (Fig 1a). Next, the experiment was 

repeated with a mixed cloud of supercooled water droplets and ice crystals. In the dry growth regime, the 

rod charged strongly positive when droplets and crystals co-existed in the cloud. The charging current was 

of the order of a few tens of pA and gradually increased as the temperature of the rime increased from  
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Fig 2: Charging current vs graupel temperature at two different flow speeds, with and without ice 

crystals in the cloud of supercooled droplets. 

 

-10ºC to -5ºC and then steadily decreased with further increase of temperature to 0ºC when wet growth 

was achieved. At this stage, the charging current remained at about 1.0 pA. The experiment was repeated 

several times and yielded similar results. 

Next, we repeated the experiment at a flow speed of 20 m s-1. The initial cloud temperature was 

reduced to -14ºC while the cloud water content remained at 3.0 g m-3. Once again, with only supercooled 

droplets present, there was no charging until Tg had exceeded -2ºC. At wet growth, a positive charging 

current of about 3.5 pA was observed (Fig 1b). With a mixed cloud, a higher charging current was 

observed at all temperatures, remaining at 50-90 pA all the way up to -2ºC, beyond which it fell sharply to 

attain a steady value of about 8 pA at 0ºC. 

Fig 3 summarises these results in a graphical form. The observations with mixed clouds, when ice 

crystals co-existed with supercooled droplets at a cloud water content of 3.0 g m-3 were broadly in 

agreement with the results of Takahashi (1978) and Jayaratne et al (1983) who also found positive 

charging under these conditions. As the rime surface temperature reached 0ºC, the charging fell by an 

order of magnitude. This was probably because the crystals were sticking on to the wet rime. The finite 

charging current that was observed may indicate that a small fraction of the crystals were still able to 
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rebound off the wet surface. However, this charging current was at least an order of magnitude lower than 

during dry growth. Inspection of the rod under the microscope showed many ice crystals stuck on the 

surface of the glazed rime. 
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Fig 3: Mean values of the charging current at 0ºC with and without ice crystals in the cloud. 

 

Also, in agreement with the two previous studies above, with a droplet-only cloud, there was no 

charging in the dry growth regime. The more interesting observation is that, when the rime attained wet 

growth at 0ºC with a droplet-only cloud, a significant charge separation was taking place. In fact, looking 

at Fig 3, we see that a substantial amount of charging observed with a mixed cloud at 0ºC, approximately 

50% at 12 m s-1 and 44% at 20 m s-1, was due to the charging that occurred with water droplets alone. 

We hypothesize that the observed charging in wet growth was due to the evaporation of melt water. 

This so called Dinger-Gunn Effect was first reported in 1946 (Dinger and Gunn, 1946). Subsequent 

studies have attributed the charge separation to the bursting of air bubbles during the melting of ice 

(Dinger, 1964; MacCready and Proudfit, 1965; Drake, 1967). Latham and Stow (1965) suggested that the 

electrification was due to the evaporation of the meltwater under a temperature gradient. A common 

observation in all these experiments was that the ice acquired a net positive charge. 

 

CONCLUSIONS 
 

Thus, we conclude that the ‘hailstone’ in our experiments charged positively during wet growth due 

to electrical effects associated with the melting and evaporation of ice, otherwise known as the 

Dinger-Gunn Effect.  The charge separation in the presence of ice crystals was due to the relative growth 

rate mechanism. The charge separated in wet growth was an order of magnitude smaller than that due to 

the relative growth rate mechanism in dry growth. This observation contradicts Takahashi (1978) who did 

not find such a large difference in the magnitude of charging between the dry and wet growth regimes. 

Following our findings, we conclude that the charging in the wet growth regime is unlikely to play an 

important role in the electrification of thunderstorms.  
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